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SUMMARY

We perform a detailed numerical study for the evolution of an expanding miscible drop in a rotating
Hele-Shaw cell. Two mathematical formulations applied to model the coating layer expansion during
practical spin-coating process, such as thinning of the layer by cell pressing and drop spreading outward
due to injection, are investigated. Including miscible interfacial stresses, we focus on the investigation of
dynamical and morphological influences of two different stabilizing parameters: the gap width parameter
for the pressing cell and the injecting strength. In the case of a pressing cell, the fingering features of the
expanding miscible drop, such as the critical radius, are distinct from those ones in the experiments of
spin coating due to the different distributions of the inherent radial velocity. On the other hand, the global
interfacial evolutions of an expanding drop with an additional injection bear remarkable resemblances to
their immiscible counterparts. The better agreement for an injecting model suggests its appropriateness
when we simulate the emerging fingering instabilities in the spin-coating process. Moreover, we investigate
the effects of Coriolis force at higher miscible Bond numbers. Coriolis force affects significantly the onset
of fingering instability and the tilting angles of fingers. These stable effects are in line with the results
from the previous studies for miscible and immiscible flow fields. Copyright q 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Fingering patterns of a rotating drop in a Hele-Shaw configuration have been investigated intensively
[1–9] since the seminal work by Schwartz [10]. Based on the Hele-Shaw theory, Alvarez-Lacalle
et al. [2] investigated the interfacial instabilities of immiscible fluids in a rotating cell both
experimentally and numerically, in which Coriolis forces are neglected. Finger pinch-off and
droplet emission are detected at the low viscosity contrast and the low surface tension in their
experiments. The numerical simulations were strikingly similar to the experimental results. They
were confident that their experiments were properly described by the Hele-Shaw equations. On
the other hand, in the studies of the miscible flow in a rotating cell, many simulations have been
conducted [5–9]. However, without available experimental data for validation, some interesting
comparisons between miscible and immiscible flows have been made on the basis of analogy
in physical mechanisms of individual parameters and qualitative observations. Many qualitative
similarities in the fingering patterns between the numerical results of miscible flows and the
experimental findings of immiscible ones at the low surface tension [2] have been found. Recently,
Chen et al. [9] numerically studied this topic in miscible rotating flows with the miscible effective
interfacial tension (or the so-called Korteweg stresses), and reported that the fingering patterns
remarkably resemble those ones in the immiscible situation [2]. Besides, they validated that
the miscible effective interfacial tensions are both qualitatively and quantitatively equivalent to
immiscible surface tensions. Chen and Wang [5] numerically studied the miscible rotating flows
with injection and showed that the injecting strength of more viscous fluid through the origin
reinforces viscous stabilization. Since the additional injection provides a greater increase in radial
velocity, this stabilizing force decays as the mixing front is displaced outward. Another Hele-Shaw
problem is a time-dependent gap cell, where the upper plate is lifted or pressed uniformly and the
plates remain parallel to each other during the process. Chen and Chen [8] studied this miscible
rotating cell with a time-dependent gap and reported that the higher pressing rate provides more
stable effects by additional squeezing outward flow. However, these studies resulted from a drop
without Korteweg stresses.

One of the main motivations to study a rotating drop in the Hele-Shaw cell is due to its
potential applications for better understandings of the spinning-coating process. Spin coating is
a widely utilized industrial process in which a thin uniform film formation is accomplished by
dispensing a liquid drop onto a fast spinning disc. Though the coating flows are characterized
by being free surface (3-D) flow and the contact angle effects are important, the approximation
by lubrication theory yields a similar physical phenomenon to Hele-Shaw equations when the
coating layer is extremely thin. During coating process, the layer of coating fluid keeps thinning
and spreads outward, which bears similarities to a rotating drop in a pressing Hele-Shaw cell [8].
In this situation, the drop expands outward rapidly with a decreasing thickness under the action
of the centrifugal force. In the meantime, the expanding drop’s area also remarkably resembles
to a rotating drop with additional injection [5, 6]. These two qualitative similarities of expanding
conditions result in an interesting question regarding their appropriateness to simulate the global
development of the emerging fingering instabilities in the spin-coating process. Despite the fact
that the formation of a capillary ride near the contact line is observed as a precursor to the
instability in the experimental works [11–14] about fingering instabilities, Spaid and Homsy [15]
demonstrated that the mechanism of the instability is insensitive to the details of the contact line
condition by performing an energy analysis. The instability of the capillary ridge arises due to
local variations in the fluid thickness, whereby thicker regions of fluid advance more rapidly over
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the substrate. Moreover, the experimental studies [11, 12] on spin coating are in good agreement
with lubrication theories for the spreading of Newtonian fluids. In this study, we neglect the
local effects of the capillary rides and focus on the evolution of the global fingering pattern. We
perform a detailed numerical study for the fingering instabilities of an expanding miscible drop by
applying both expanding mechanisms, the pressing cell and the cell with additional injection. First,
we will investigate how the gap width parameter of a pressing cell couples to relevant control
parameters, leading to interesting dynamical and morphological effects. Second, we will study
the influences of additional injection on the morphological properties of the miscible flow in a
rotating cell. Finally, evaluations of both the results by comparing the global interface evolution
and fingering morphologies of these two cases with the experimental ones obtained from related
cases [11–14, 16] of spin coating will be discussed.

2. GOVERNING EQUATIONS

We investigate the interfacial instability of a heavier (density �h) and more viscous (viscosity �h)
drop with initial diameter D0, surrounded by a miscible fluid with less density and viscosity which
are denoted as �l and �l, respectively, in a rotating Hele-Shaw cell as shown in Figure 1. For the
case of additional injection, a point source flow with volume strength Qc per unit depth is injected
through the centre of the cell. For the situation l with a time-dependent cell gap, the flow takes place
in a narrow space between two flat plates, where the upper plate is pressed downward uniformly at
a specified rate. The initial plate spacing is represented by b0 and b(t) denotes the time-dependent
plate–plate distance. An exponentially increasing cell gap width [17, 18] b(t)= b0eât is assumed
in the present study, where â is a pressing control parameter with a negative value (â�0). These
physical problems are governed by the set of following equations [6, 8, 17–19]:

∇ · u=− ḃ(t)

b(t)
(1)

∇(p + Q) =−12�

b2
u + ��̂2x + 2��̂ez ×u + ∇ · (�̂(∇c)(∇c)T) (2)

�c
�t

+ u · ∇c= D∇2c (3)

Figure 1. Schematic representation of the miscible fluids in a rotating
Hele-Shaw cell with a time-dependent gap.
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Equation (1) expresses a modified incompressible condition that accounts for the pressing of
the upper plate [17, 18]. The gap-averaged velocity is expressed by u and the overdot denotes
the total time derivative. A generalized Darcy’s law is expressed by Equation (2) where p is the
hydrodynamic pressure and Q is the additional pressure due to the Korteweg stresses expressed
as [19]

Q = �̂

3
|∇c|2 − 2�2

3
∇2c + 2��

3�h
�D∇2c (4)

where �2 is the property constant, ��= �h − �l denotes the density difference and D the constant
diffusion coefficient. The concentration of lighter fluid is represented by c and � denotes the
viscosity, �̂ the angular speed, x the position vector on x–y plane, ez the unit vector in z-direction
and �̂ the Korteweg stresses coefficient. The superscript T denotes the transpose. In addition to
the conventional viscous term on the right-hand side of this equation, the extra second, third and
fourth terms are the centrifugal forces, the Coriolis forces and the miscible effective interfacial
tension, respectively. The concentration equation is given by Equation (3). The density and viscosity
variations of the mixture are expressed as [7, 18]

�(c)= c�l + (1 − c)�h (5)

�(c)= �le
R(1−c), R = ln(�h/�l) (6)

where R is the viscosity parameter. In order to render the governing equations dimensionless,
we take the diameter D0 of the drop and the density difference �� = �h − �l associated with a
dimensionless time of 12�l/b

2
0���̂2 as the characteristic scales. By making the governing equations

dimensionless, we obtain the dimensionless parameters, such as the Peclet number Pe which can
be interpreted as the dimensionless rotating speed, the viscosity Atwood number A representing
the viscosity contrast, the Reynolds number Re which includes the effect of the Coriolis forces, the
dimensionless Korteweg constant � that stands for the effects of Korteweg stresses, the gap width
pressing parameter a which represents the variety of the dimensionless rate in the gap spacing.
The dimensionless parameters take the forms as

Pe= ��b20�̂
2D2

0

12�lD
, A= eR − 1

eR + 1
, Re= ��b20�̂

12�l
, � = �̂

���̂2D4
0

, a = 12â�l
��b20�̂

2
(7)

We split the velocity into a divergence-free component uf, which is the velocity of the constant
spacing and an axisymmetric divergent radial velocity uf caused by the gap variation. The divergent
radial velocity can be obtained directly as ur =−ar/2, which is a potential field. The divergence-
free component uf = (uf, vf) can be acquired by solving the dimensionless governing equations
that are obtained in terms of streamfunction � and vorticity �, where streamfunction � is further
split into the potential component �pot and rotational part �rot. The dimensionless streamfunction–
vorticity formulation and dimensionless equations can be expressed as

uf = ��

�y
, vf = ��

�x
(8)

∇2� =−� (9)
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� = −R∇� · ∇c − 1

e−2at�

(
y
�c
�x

− x
�c
�y

)
− 2 Re

e−2at�

(
u

�c
�x

+ v
�c
�y

+ �a

)

− �

e−2at�

(
�c
�x

(
�3c

�x2�y
+ �3c

�y3

)
− �c

�y

(
�3c

�y2�x
+ �3c

�x3

))
(10)

For the situation of additional injection, the analytical distribution of potential radial velocity
vr induced by a point source can be expressed as [5, 6]

vr = I

r
, I = 6�lQc

�b20���̂2D2
0

(11)

where I is the dimensionless injecting strength. Boundary conditions are prescribed as follows:

x = ± 2: �rot = 0,
�c
�x

= 0 (12)

y = ± 2: �rot = 0,
�c
�y

= 0 (13)

The initial condition is assumed as a circular shape bounded by a steep concentration gradient
in the form of error function. To break the unphysical fingering symmetry, a small magnitude
of random perturbations is applied to the positions at c= 0.5. In order to obtain extremely fine
structures of fingers, a highly accurate pseudospectral method is employed. As a result, the actual
boundary conditions applied in the numerical codes at x = ±2 are modified as ��rot/�x = 0. Under
the present situation where no concentration gradient is generated on these boundaries before the
calculations terminated, the above conditions automatically lead to �rot = 0 and vorticity �= 0.
Both � and � are expanded in a cosine series in the x direction as

�(x, y, t) =∑ �̂k(y, t) cos[2�kx] (14)

�(x, y, t) =∑ �̂k(y, t) cos[2�kx] (15)

In the y direction, discretization is accomplished by sixth-order compact finite differences. Vorticity
equation is evaluated by sixth-order compact finite difference schemes. The spatial datives in the
concentration equation are discretized by sixth- and fourth-order compact finite difference schemes
for diffusion terms and convection terms, respectively. A fully explicit third-order Runge–Kutta
procedure on time employed to solve concentration equation and advance in time as

�c
�t

= F(c) (16)

so that

cki, j = ck−1
i, j + �t[�k F(ck−1

i, j ) + �k F(ck−2
i, j )] (17)

where �1 = 8
15 , �1 = 0; �2 = 5

12 , �2 =− 17
60 ; �3 = 3

4 , �3 =− 5
12 . The numerical code is largely identical

to the one used in earlier investigations [6, 8, 18, 20, 21], which had been validated by comparing
growth rates of small perturbations with linear stability results. More details on the implementation
and quantitative validation of these schemes are provided in References [6, 8, 18, 20, 21].
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3. RESULTS AND DISCUSSIONS

In order to link the miscible studies with the immiscible ones that are affected by a dimension-
less Bond number Bo, an effective interfacial tension 	EIT will be evaluated and expressed in a
dimensionless form of miscible Bond number Bom. By defining a dimensionless miscible Bond
number Bom, directly qualitative and quantitative comparisons with their immiscible counterparts
published in the literatures can be carried out. In addition, agreement between the present results
and the findings of immiscible experimental ones could partially validate our numerical simula-
tions. For a typical micro-fabrication practice, the spin coating takes place amid an immiscible
interface at a high rotational Bond number. The rotational Bond number (Bo) is defined as

Bo= ��̂2V/	 (18)

where V is the volume of drop and 	 is the surface tension. Bo represents a ratio of the centrifugal
force to the surface tension. Wang and Chou [14] experimentally studied the fingering instability
of a spinning drop at high rotational Bond numbers and reported that the Bond number plays a
crucial role in spinning flow. They found that for a high Bo, the number of fingers Nf increases
rapidly with Bo, while Nf is almost independent on Bo for Bo<50. In the present situation of
miscible interfaces, a miscible Bond number Bom can be defined by replacing the conventional
immiscible surface tension 	 in Equation (18) with a miscible effective interfacial tension [9, 22],
such as

Bom = �

160	EIT
(19)

where

	EIT =
∫
M

|�|
(
dc

dn

)2

dn (20)

	EIT is the dimensionless miscible effective interfacial tension [23]. In Equation (20), the integration
is taken across (and perpendicularly) the mixing interface (n represents the normal direction to
the interface), with M denoting the mixing region. Note that the integrand in Equation (20) is
reminiscent of the Korteweg stress contribution appearing as the fourth term at the right-hand
side of the generalized Darcy’s Law (see Equation (2)). So, the miscible effective interfacial
tension is naturally defined by integrating such squared normal gradient of the concentration
across the interface. Besides, we assume that the drop approximates a spreading flat disc of fluid
and the initial plate spacing b0 = R0/20 in Equation (19), where R0 is the initial radius of the
drop.

Now, we begin our numerical investigation by performing a series of studies on the concentration
images and contours obtained from different values of the control parameters. In order to compare
the simulated findings of miscible spinning drops with the immiscible experimental ones, we keep
a higher Peclet number Pe= 2× 104, which means weaker diffusive effects or a faster rotating
speed, and a higher Atwood number A= 0.905 in this study. The A-value indicates that the
drop is about 20 times more viscous than the environment. We focus on the effects of both the
gap width parameter a and the injecting strength I with various strengths of Korteweg stresses at
� =−5× 10−6 and −8× 10−5 to obtain conditions of both the higher and lower Bom. Furthermore,
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a typical density ratio at �h/�l = 100 is applied to the cases with a non-zero gap width parameter
to simplify the problem.

3.1. Simulations of a pressing cell

First, we simulate the case of a pressing cell and introduce stronger Korteweg stresses into the flow,
but without additional injected liquid, i.e. � =−8× 10−5 and I = 0 for Pe= 2× 104, A= 0.905.
Figure 2 depicts the interface evolutions for concentration contours of c= 0.7 for different press-
ing rates a = 0,−0.01,−0.014 and −0.016 at various time. Figure 2(a) shows a representative
calculation of a drop in constant gap spacing cell. After a latency period, the interface develops
small ripples, which indicates the initiation of instability. Very vigorous interfacial instability is
triggered by the strong centrifugal force after t�25, which gives rise to a characteristic fingering

Figure 2. Pe= 2× 104, A= 0.905, �=−8× 10−5, and I = 0. Interface evolution for concentration contours
of c= 0.7 in different pressing rate: (a) for a = 0, curves at time of 0, 25, 30, 35 and 40 are represented;
(b) for a =−0.01, curves at time of 0, 30, 45, 60 and 75; (c) for a =−0.014, curves at time of 0, 20, 40,
60, 80, 100 and 120; and (d) for a =−0.016, curves at time of 0, 20, 40, 60, 80, 100,120 and 140. As the
upper plate is pressed at a certain rate, the outward flow of a more viscous fluid provides stable force.
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pattern. Significant inward penetrations on the inner front are also clearly observed. The fingering
patterns of this case do resemble the ones obtained by immiscible situation with strong surface
tension [1, 4]. In this situation with strong interfacial tensions of � =−8× 10−5, the miscible Bond
number is calculated at about Bom = 17, which is close to the lower values of Bond numbers in
the immiscible experiments [11–13]. In the following simulations, we will apply the present value
of Korteweg constant to further compare with the experimental findings [11–13].

In Figure 2(b), we set the gap pressing parameter a =−0.01. It is known that the displacement
of a less viscous fluid (the surrounding fluid in the present situation) by a more viscous fluid (the
expanding drop) leads to a stable interface. So, the outward flow of a more viscous fluid provides
a stable force as the upper plate is pressed at a certain rate. The interface evolution shows that the
interfacial fingering is delayed until t�45. After the onset of instability, the fingers of outer fluid
quickly penetrate inward and finally reach near the circular contacting front of the original drop.
On the contrary, for the case of a higher pressing rate a =−0.016 as shown in Figure 2(d), the
interfacial fingerings are suppressed significantly and the miscible interface is much more stable. If
the pressing rate is further raised to a =−0.02, it results in a fully stable circular pattern. In these
cases, the interfacial morphologies in the outer region are dominated by the competition of three
different mechanisms, which are stable viscosity contrast, stable pressing outward velocity and the
unstable centrifugal force. On the other hand, the reverse penetration on the inner front is governed
by the balance between viscous instability and squeezing outward stability. If we modulate the
pressing rate properly, i.e. a =−0.014 shown in Figure 2(c), the fingering patterns are significantly
similar to those ones in the immiscible experimental results of Melo et al. [11] where Bond number
is about Bo= 10. Also, the interfacial evolution for the concentration contours of c= 0.7 is very
similar to those ones in the immiscible experimental findings (Figure 4 in Fraysse and Homsy [12])
and numerical results of Schwartz and Roy [24] for Newtonian fluid, where the Bond numbers
are about Bo= 8. However, in this case the dimensionless critical radius Rc/R0 = 1.35, where
Rc is the critical radius of the drop at the onset of instability, is much smaller than Rc/R0 = 2.0
which is the immiscible experimental results of Fraysse and Homsy [12]. Besides, the number
of fingers remains almost unchanged, i.e. Nf = 9, in both Figures 2(b) and (c). This phenomenon
that the number of fingers do not increase with the increasing critical radius at a higher pressing
rate is inconsistent with the findings in the immiscible experiments [12, 14, 24]. These variations
are attributed to the different distributions of the radial velocity. According to the lubrication
approximation, the drop radius increases as t1/4 in asymptotic regime [11, 12]. Moreover, a power
law fit for the experimental data of Fraysse and Homsy [12] suggests a similar approximation
of t0.29, and the results of Melo et al. [11] are approximately as t1/3. Hence, the experimental
asymptotic radial velocity in spinning drop is inversely proportional to the square of distance
away from the origin, i.e. vr ∼ r−2 [12]. Nevertheless, at the present pressing cell, the radial
velocity is proportional to the radial distance (vr ∼ r). The inherent radial velocity distributions
appear a fundamental difference. For a sufficient large pressing rate at a later stage, the interface
is primarily controlled by the increasing radial pressing velocity. On the other hand, the radial
expansion in a typical practical spin-coating process decays as time proceeds. As a result, the
interface is predominated by the centrifugal force at a later stage. This discrepancy suggests that
a pure pressing cell model is not fully appropriate to simulate the spin-coating processes even
though the morphological evolutions show great qualitative similarities in certain cases. For the
same reason, when we perform the simulations of a miscible drop with weaker Korteweg stresses
(higher Bond numbers) in a pressing cell, the fingering patterns are inconsistent with the immiscible
experimental findings of Wang and Chou [14] for higher Bond number.
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3.2. Effects of injection

We now focus on the situation with additional injection from the origin. Figure 3 displays the
interfacial evolution for the concentration contours of c= 0.7 in four different injection strengths
with strong Korteweg stresses. Compared with the reference case in Figure 2(a), Figure 3 clearly
shows the more stable effects by the injecting flow. The onset time of instability is delayed, and the
original circular mixing front is better preserved while expanding outward. Likewise, for smaller
injection strength I = 0.006 in Figure 3(a), significant inward penetration occurs after the onset of
instability, and the fingers rapidly grow outward and finally stretch to the computational boundaries.
In addition, it is observed that a stronger injecting strength leads to a larger critical radius Rc and

Figure 3. Pe= 2× 104, A= 0.905, �=−8× 10−5, a = 0, interface evolution for concentration contours
of c= 0.7 in different injection strength: (a) for I = 0.006, curves at time of 0, 10, 20, 30, 35 and 40 are
represented; (b) for I = 0.012, curves at time of 0, 5, 10, 15, 20, 25, 30, 35 and 38; (c) for I = 0.02,
curves at time of 0, 5, 10, 15, 20, 25, 30 and 35. More number of fingers and larger critical radius Rc
at the stronger injecting strength show that the injecting flow reinforces viscous stabilization; and (d)
for I ∗ = 0.005, curves at time of 0, 5, 10, 15, 20, 25, 30, 35 and 38. This interface evolution is very

similar to that ones in Figure 3(b).
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more fingers in Figures 3(b) and (c). In line with the common spin-coating phenomena [12, 14, 24],
the number of fingers increases as the critical radius increases. With increasing the perimeter of the
expanding drop and decreasing the interface curvature and surface tension, more fingers are easily
generated. When we modulate the injection strength to I = 0.012 as shown in Figure 3(b), the
fingering patterns also resemble remarkably the experimental results of Fraysse and Homsy [12] for
Newtonian fluid and Spaid and Homsy [13] for a viscoelastic drop. Moreover, the dimensionless
critical radius Rc/R0 = 1.95 also approaches the immiscible experimental results of Rc/R0 = 2
by Fraysse and Homsy [12]. In addition, the denser concentration accumulation is found at the
fingertip area in Figure 3. Compared with the pressing case in Figure 2(c), Figure 3 shows that the
fingertips are rounder in these cases while the fingers become increasingly sharper in Figure 2(c).
The pattern of fingertips in Figure 3 is also similar to the ones in the immiscible cases [11, 24].
This phenomenon is attributed to the farther fingers with slow spreading velocity when the flux
of injection to the centre of drop is constant. As stated above, the experimental asymptotic radial
velocity in spinning drop is inversely proportional to the square of distance away from the origin
(vr ∼ r−2). In the current case, the magnitudes of inherent radial velocity caused by injection are
inversely proportional to the distance away from the origin, c.f. vr ∼ r−1, which is more consistent
to the experimental measurements. This explains better quantitative agreement for the present
injecting model in simulating a spin-coating process.

Since the experimental asymptotic spreading velocity is vr ∼ r−2, we carry a simulation by apply-
ing this radial velocity profile by modifying the radial velocity distribution shown in
Equation (11) as

v∗
r = I ∗

r2
(21)

where I ∗ is the modified dimensionless injecting strength. All the physical parameters are kept
the same as the ones used in Figure 3(b) except replacing I with I ∗ (I ∗ = 0.005). Figure 3(d)
displays the interface evolution of the simulation for the concentration contours of c= 0.7. This
interface evolution is very similar to those ones in Figure 3(b). Therefore, the above simulations
have confirmed that the morphological properties of an expanding drop in a rotating cell with an
additional injection lead to better agreement with their immiscible counterparts in spin coating.

3.3. Effects of Korteweg stresses and Coriolis forces

In this section, we turn to investigate the effects of injection in weaker Korteweg stresses cases.
Figure 4(a) shows a calculation of a drop with weaker Korteweg stresses, but without additional
injected liquid in constant gap spacing cell, i.e. � =−5× 10−6, I = 0 and a = 0, for Pe= 2× 104,
A= 0.905. Compared with the similar case with stronger Korteweg stress displayed in Figure 2(a),
the weaker miscible effective interfacial tension induces more vigorous interfacial instability. A
more irregular reverse penetration on the inner front is observed. According to the estimate by
Equation (19), a miscible Bond number is about Bom = 207. This case of higher miscible Bond
number is applied to the simulate results of the miscible spinning drops with the weaker Korteweg
stresses in order to compare with the findings [14, 16] of spin coating at a higher rotational Bond
number. In Figure 4(b), we apply the injecting strength I = 0.05 in the cell. It shows clearly that
there are a lot more fingers than the previous simulations. Similar to the case with strong Korteweg
stresses, a stronger injecting strength leads to a larger critical radius and more fingers. Figure 5
shows the dimensionless critical radius Rc/R0 and the number of fingers Nf as a function of the
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Figure 4. Pe= 2× 104, A= 0.905, �=−5× 10−6, a = 0, interface evolution for concentration contours
of c= 0.7: (a) for I = 0, Re= 0, curves at time of 0, 10, 15 and 17.5 are represented; (b) for I = 0.05,
Re= 0, curves at time of 0, 2.5, 5, 7.5, 10, 12.5, 15 and 17.1; and (c) for I = 0.05, Re= 0.7, curves
at time of 0, 2.5, 5, 7.5, 10, 12.5, 15 and 17.5. It is clearly observed that extremely slim fingers turn

counter-clockwise due to the effects of the strong Coriolis force.

Figure 5. The dimensionless critical radius Rc/R0 and the number of fingers Nf, as a function of the
injecting strength I . It shows that the number of fingers is almost proportional to the perimeter of the
expanding drop at the moment of onset. Besides, the fact that Coriolis force can increase the critical

radius for the stronger injecting strength is observed.

injecting strength I . The number of fingers is almost proportional to the perimeter of the expanding
drop at the moment of onset. Thus, the number of fingers will be larger if a drop can expand
to a large radius before the fingering instability starts. These features agree with the practice of
spin coating in high Bond number [14]. Besides, like the interfacial evolution of experiments [14]
for a typical spin-coating flow with forming fingers at high Bond number, it is observed that the
outward flow preferentially runs into these fingers and completely bypasses some portions of the
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substrate. Therefore, we point out that, if Korteweg stresses are taken into account in a rotating
miscible case, the interfacial evolutions and morphologies of an expanding drop with an additional
injection in a rotating Hele-Shaw cell are strikingly similar to the ones in common spin-coating
process.

The Coriolis force plays an important role in spinning flow at high rotational Bond number
[14, 16]. Thus, we perform the simulations of a miscible drop with weaker Korteweg stresses to
investigate the effects of Coriolis force, in terms of dimensionless parameter Reynolds number Re.
It is noteworthy to point that Waters and Cummings’ recent studies [25] introduced Coriolis force
in a more rigorous fashion onto a 3-D Navier–Stokes equation, and the findings were compared
with the ones of the gap-averaged 2-D Darcy’s model of Schwartz [10] at the linear level. They
reported that inclusion of the Coriolis force into Darcy’s law can lead to significant errors at large
Reynolds number, while Schwartz predicts approximately at smaller Re. In order to account for the
effect of Coriolis force, we keep the Reynolds number fixed at Re= 0.7 to match the experimental
value of Re in Reference [16] for spinning flow at high rotational Bond number in this study.
Figure 4(c) shows the interface evolution for concentration contours of c= 0.7 for Pe= 2× 104,
A= 0.905, � =−5× 10−6, I = 0.05 and Re= 0.7. Compared with the case in Figure 4(b) without
Coriolis force, this pattern shows that the extremely slim fingers turn counter-clockwise due to
the effects of the strong Coriolis force. It is important to note that the morphologies observed
in this result are remarkably similar to those ones obtained experimentally [16] and numerically
for immiscible flow [24]. Cho et al. [16] experimentally studied the effects of Coriolis force on
fingering instability during spin coating, and reported that Coriolis force affects significantly the
onset of fingering instability, the tilting angle and the shape of fingers, and the maximum attainable
radius. Consistent findings are obtained and shown in Figure 5, such that for a stronger injecting
strength, Coriolis force can delay the critical time and increase the critical radius. These stable
effects are in line with the previous studies for miscible [6, 8] and immiscible flow fields [16, 24].

4. CONCLUSION

We have presented the numerical simulations of fingering instabilities on an expanding miscible
drop in a rotating Hele-Shaw cell. The investigation intends to evaluate the appropriateness of two
mathematical descriptions that are applied to model the coating layer expansion during practical
spin-coating process, i.e. thickness thinning by cell pressing and drop spreading outward due
to injection. We study the influences of relevant control parameters, focusing on the gap width
parameter a, the injecting strength I , the Korteweg stresses � and Coriolis forces Re. For an
expanding drop in a cell of sufficient large pressing rate, the interface is primarily controlled by
the radial velocity (vr ∼ r), leading to the interfacial instabilities distinct from those ones in the
immiscible experiment (vr ∼ r−2) due to the significant different distributions of the inherent radial
velocity. On the other hand, the fingering features of a rotating drop with an additional injection,
such as overall interface evolution and fingering morphologies, bear remarkable resemblances to
their immiscible counterparts [11–14] because of a more similar distribution of the inherent radial
velocity profile c.f. vr ∼ r−1. The results suggest the model with an additional injection is more
appropriate to simulate the global development of the emerging fingering instabilities in the spin-
coating process. Moreover, we investigate the effects of Coriolis force in the situations of weaker
Korteweg stresses (high miscible Bond numbers). For the stronger injecting strength, Coriolis
force affects significantly the onset of fingering instability and the tilting angles of fingers. These
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stable effects are in line with the previous studies for miscible [6, 8] and immiscible [16, 24] flow
fields.
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